

Design Room ONE

Automated Export to Design
Room ONE

This document describes how exporting models to Design Room ONE server
can be automated and integrated in delivery pipeline with Git and Jenkins.

Contents

Introduction .. 3

Create a Git Repository ... 4

Configure the Git Repository for Push Notifications .. 8

Create a Jenkins Build Task .. 8

Test Automatic Export from RSAD/RSARTE/RTist ... 13

Introduction

Manually exporting a model from or HCL RTist or Rational Software Architect
Designer (RSA) or Rational Software Architect Realtime Edition (RSARTE) to
Design Room ONE is not practical if the model changes frequently, and you
want to ensure that the latest version is always available on the Design Room
ONE server. In this case you should set-up a scheme where the model is
automatically exported. For example, you can choose to export the model
once per day, or based on a notification from the SCM system (so that an
export takes place as soon as a new version of the model is committed to the
SCM system).

In this article we describe how to set-up automatic export to Design Room
ONE in an environment where Git is used as SCM system, and Jenkins is used
for build automation. We use the EGit integration in RTist/RSAD/RSARTE so
that developers can push their model changes to Git from within their
modeling tool. A few seconds later, an updated version of the model will be
available on the Design Room ONE server.

What we will set-up is illustrated in the picture below:

Local
Git repo

commit

Remote
Git repo

push

Git Hosting Server (GitHub)

Build Server
(Jenkins) Jenkins Build

Task

push notification (Git hook)

Ant task
(com.hcl.design.room.exporter.ui.exportModelsTask)

Design Room ONE Server

Design Room ONE
web server

export

Create a Git Repository

If you don’t already store your models in Git, the first step is to create a Git
repository for your model. Here we assume usage of GitHub, the popular
web-based Git repository provider. However, any Git repository can be used.

1. In the Project Explorer right-click on the model projects that you want to

store in Git. Perform the command Team – Share Project.

2. Select Git in the Share Project dialog that appears.

3. In the Configure Git Repository dialog press the Create button to specify
a folder where to store the local Git repository on your computer. Make
sure that all projects that you want to store in the Git repository are
marked in the list at the bottom of the dialog. Then press Finish.

4. Switch to the Git perspective and locate your newly created Git repository

in the Git Repositories view. We now need to connect this local Git
repository to a remote Git repository at GitHub. Right-click on the
Remotes node and do Create Remote.

5. Give a name to the Remote (the default name “origin” is fine). Then press
OK to configure how to push changes from your local Git repository to the
remote Git repository. In the Configure Push dialog enter the URI of your
GitHub repository.

Press Save to close the dialog.

6. Now configure how to fetch changes from the remote Git repository to

your local Git repository. Right-click on the Remote node in the Git
Repositories view and run the Configure Fetch command.

Add a Ref mapping and specify the name of the branch in the remote
repository from where you want to fetch changes.
Now you have configured your local Git repository so that you can use the
Push, Fetch and Pull commands from the context menu to push changes
from the local to the remote Git repository, and to fetch or pull changes in
the opposite direction.

7. The first change to push to the remote repository is the initial set of files
in your model projects. First stage the files from the Git Staging view by
dragging all unstaged files into the Staged Changes area. Then write a
commit message and press the Commit and Push button.

If the push fails, you may first have to pull changes from the remote Git
repository that you don’t yet have in your local Git repository.
After a successful push you should be able to see your changes on GitHub:

Configure the Git Repository for Push Notifications

The next step is to configure the GitHub repository so that it sends a
notification each time a new commit is pushed to it. We will use this
notification to trigger a build task in Jenkins which can perform the export to
Design Room ONE.

8. Go to your GitHub repository in a web browser. Click on the Settings tab.

9. Click on Hooks & services in the list to the left. Then click the Add service
button and select the Jenkins (GitHub plugin) service.

If your Git repository is not on GitHub but on another server, use the
Jenkins (Git plugin) instead.

10. Enter the URL of your Jenkins server and append “/github-webhook/” and
then press the Add service button. For example:

The added GitHub service will trigger a Jenkins build task every time new
changes are pushed to Git. Now it’s time to create that build task in Jenkins.

Create a Jenkins Build Task

Create a new build task using the Jenkins web page.

11. Open a web browser and log in to Jenkins. Click on New Item in the list to

the left.

12. Create a new Freestyle project. Enter a name for the build task that does
not contain spaces or other “strange” characters. For example,
“DRONEAutoExport”.

13. The build task will perform an export to Design Room ONE, so it is

important that it is executed on an agent machine where
RSAD/RSARTE/RTist with the Design Room ONE integration plugin is
installed. You can use the Restrict where this project can be run option to
specify an agent machine to use, in case the modeling tool is not installed
on all of them.

14. In the Source Code Management section mark Git and enter the URL to
you GitHub repository.

If you login to GitHub with SSH you can click the Add button and specify
your private key to let Jenkins use it for authenticating with GitHub.

15. You can specify the branch to monitor in the Branch Specifier field. If you

use the master branch just leave the default value unchanged.

16. In the Build Triggers section mark the GitHub hook trigger for GITScm
polling checkbox.

If you don’t use GitHub but another Git server you would instead mark the
Poll SCM checkbox and specify a schedule for when the Git repository
should be polled for changes.

17. Our build task will perform the model export to Design Room ONE by

invoking the Ant task com.hcl.design.room.exporter.ui.exportModelsTask

provided by the Design Room ONE integration plugin. This Ant task
requires a display to be available on the agent machine. If the agent
machine you specified above does not have a display you can scroll down
to the Build Environment section and mark the Start Xvfb before the
build, and shut it down after checkbox. This will ensure that a display
server is started before running the build task.

Also press the Advanced button next to this checkbox and mark the
checkbox Let Xvfb choose the display name.

Finally, set the option Xvfb screen to specify an appropriate screen
resolution and color depth:

Without this setting exported diagrams may get a different appearance in
Design Room ONE.

18. In the same section also mark the checkbox Delete workspace before

build starts.

This is not strictly necessary, but it ensures that each time Jenkins runs the
build task, it will start with a new workspace. It is recommended to have
this checkbox marked while working on the set-up since it can make it
easier to troubleshoot problems. However, once the set-up is ready and
works, you can unmark this checkbox to make the build task run a bit
faster.

19. In the Build section click the Add build step button and choose Execute
shell. Write a script that starts an eclipse application.
For RSAD the application id should be
org.eclipse.ant.ui.antRunner

In order to better capture real-time specific details about the model for
RSARTE and RTist the application id should be
com.hcl.design.room.exporter.ui.DRExporter

Here is an example of what a bash script for Linux and RSAD could look
like. Adjust it as necessary depending on the agent machine you use for
executing the build task.

#!bash -x
/storage/IBM/SDP961/eclipse -nosplash -data $WORKSPACE/tmp_ws -application
org.eclipse.ant.ui.antRunner -file $WORKSPACE/export.xml

$WORKSPACE is an environment variable set by Jenkins to the absolute
path of the folder assigned to the build. The build task pulls files from
GitHub into that folder. We also create a temporary Eclipse workspace
(tmp_ws) in this folder and run Eclipse in headless mode on that workspace

with an Ant file export.xml as input. We will create that file shortly, but for

now just notice that we use the Ant runner that requires a display
(org.eclipse.ant.ui.antRunner). That is the reason why the build task must

start the display server Xvfb.

20. To test that your build task works as expected you can now trigger a build
manually from Jenkins. Click on Build Now. When the build has finished
click its link in the Build History list and then click Console Output. Read
the printouts and ensure that the build task successfully cloned the Git
repository and then ran the script you wrote. However, you should expect
to see an error message:
BUILD FAILED
Buildfile: /storage/jenkins/workspace/DRONEAutoExport/export.xml does not
exist

This is expected since we didn’t yet write that file. Now let’s do it directly
in GitHub. Press the button Create new file on your main repository page
in GitHub:

Create a file export.xml with this content:

<project name="automaticExport" default="export" basedir=".">

 <target name="export">
 <com.hcl.design.room.exporter.ui.exportModelsTask
 configuration="${WORKSPACE}/config.xml"
 importFrom="${WORKSPACE}">
 </com.hcl.design.room.exporter.ui.exportModelsTask>
 </target>
 </project>

Note: when specifying configuration and importFrom attributes you can use
environment variables. For example, if you want to use the value of
environment variable WORKSPACE that Jenkins will set before running its
build, you can use the following syntax: $(WORKSPACE) or ${WORKSPACE}. If you

are not using Jenkins, but some other way to invoke the export command
you need to ensure the variables used are assigned with proper values.
In addition to environment variables with the same syntax you can use a
special variable called workspace_loc that will refer to the workspace
location used by the eclipse instance running the export. In this example the
value of workspace_loc is $WORKSPACE/tmp_ws because we set it in step 19 by

adding -data parameter.

If you have authentication enabled on your Design Room ONE server, add the
publishing user credentials as shown below.

<project name="automaticExport" default="export" basedir=".">
 <target name="export">
 <com.hcl.design.room.exporter.ui.exportModelsTask
 configuration="${WORKSPACE}/config.xml"
 user="myuser"
 password="mypassword"
 importFrom="${WORKSPACE}">
 </com.hcl.design.room.exporter.ui.exportModelsTask>
 </target>
 </project>

21. Scroll down to the bottom of the page and press the button Commit new
file. If you now switch back to Jenkins you will see that our commit of
export.xml triggered a build. However, it still fails, but now because of

another file that is missing:

BUILD FAILED
/storage/jenkins/workspace/DRONEAutoExport/export.xml:5: Cannot find file:
/storage/jenkins/workspace/DRONEAutoExport/config.xml

The file config.xml is referenced by the Ant build file export.xml and

contains the settings that control how to export from
RSAD/RSARTE/RTist to Design Room ONE.

22. Create the file config.xml in GitHub in the same way as you created

export.xml. The easiest way to get the contents of this file is to use the

wizard for exporting designs in RSAD/RSARTE/RTist. Follow the normal
steps for performing a manual export to Design Room ONE, but on the 3rd
wizard page do not perform the export, but instead enter a file name for a
configuration file and press the Save configuration to button.

Here is an example of what the file could look like when exporting two
models (your Design Room ONE server URL will be different):

<?xml version="1.0" encoding="UTF-8"?>
<drexport designName="RSAD_AutoExported_Designs" insecure="true"
logFile="${workspace_loc}/drexport.log" serverURL="https://dr-
one.hclpnp.com/dr">
<resources>
 <resource path="/MyProject/Blank Package.emx"/>

 <resource path="/OtherProject/Blank Package.emx"/>
</resources>
<workingSets/>
</drexport>

To avoid having to update this file each time you add a new model file to
your projects, you can modify the file slightly to specify patterns instead
of hardcoded paths:

<resource pattern="/MyProject/*.emx"/>
<resource pattern="/OtherProject/*.emx"/>

Note: when specifying logFile attribute only workspace_loc variable can
be used.

23. As soon as you commit the file config.xml to GitHub you should notice

another build being run by Jenkins. And this time it should be successful
with a printout similar to this:

[com.hcl.design.room.exporter.ui.exportModelsTask] 08:27:49 : EXPORT
COMPLETED. ELAPSED TIME 6886 ms (0 h 0 min 6 sec)
BUILD SUCCESSFUL

Our set-up is complete, and we are now ready to test everything from
within RSAD!

Test Automatic Export from RSAD/RSARTE/RTist

We have now created a set-up where a user can work in the modeling tool
and push changes to Git, and it will immediately trigger an export of the
updated model to Design Room ONE. Let’s try with a small change.

24. Create a new model element in one of the projects you store in Git. For

example, create a new attribute:

25. Save the model and switch to the Git perspective. In the Git Staging view
drag the modified file to the Staged Changes area, write a commit
message and press the Commit and Push button.

If the push fails, you first have to pull changes from the remote Git
repository that you don’t yet have in your local Git repository (remember
those files export.xml and config.xml that you created?). Then you can push

again (use the context menu of the Git repository in the Git Repositories
view both for pulling and pushing changes).

26. Right after pushing your changes switch to Jenkins and note that a new

build was started:

Wait until it has finished.

27. Now go to the Design Room ONE web application and open the design

you exported your models to (the name is specified in the file config.xml).

The added attribute is there!

