

Design Room ONE

Using Rational Publishing
Engine with Design Room ONE

This document describes how Rational Publishing Engine (RPE) can be used
to create reports that contain data available in Design Room ONE server.

Contents

Introduction .. 3

Tutorial .. 3

Lesson 1: Print the names of all designs ... 3

Lesson 2: Print the root elements of a design, its diagrams and children 9

Lesson 3: Print all classes in a design, and the operations they contain16

Lesson 4: Print elements with DOORS links and data about the linked
requirements .. 25

Reporting API Reference .. 32

Using Basic Authentication ... 33

Reporting .. 34

Designs .. 34

Model Roots ... 35

Model Elements ... 35

Children ... 36

Diagrams ... 36

Links ... 37

Element ... 37

Troubleshooting .. 39

Introduction

The document contains two parts:
1. A tutorial that describes the creation of a few sample reports which

illustrate usage of the most common reporting APIs provided by
Design Room ONE.

2. A reference manual describing all reporting APIs provided by Design
Room ONE.

If you already are familiar with using RPE you can skip the tutorial and go
directly to the API reference.

Tutorial

This tutorial assumes you have RPE Document Studio 2.1.1 installed. Using a
different version of RPE will most likely also work, but you may notice small
differences compared to the described steps and screen shots.

Although you can test the sample reports on your own models, you may want
to use the model “JKE Banking” which you find next to this document (in <dr-
server-install-folder>\DR_ReleaseManagement\doc\reporting_with_rpe\JKE

Banking). The tutorial assumes you have exported this model to a Design

Room ONE server and called the design “DemoRPE”.

The first lesson assumes no previous experience from using RPE and is
therefore rather detailed. Subsequent lessons build on the previous ones and
will not go into the same level of detail.

Lesson 1: Print the names of all designs

Sample report: DR_all_designs.dta
Reporting APIs used: Designs

Let’s start by the simplest possible report – a listing of all designs that are
available on a Design Room ONE server.

1. Create a new document template (New – Document Template). Save it
as “DR_all_designs.dta”.

2. Build the document template by dragging and dropping items from
the palette to the template editor. Start by a Text item for the header:

Hint! You can find all sample reports created in this tutorial in the samples folder next

to this document
(in <dr-server-install-folder>\DR_ReleaseManagement\doc\reporting_with_rpe\samples).

You can either create the sample reports yourself from scratch when reading
through the tutorial, or you can just open the samples and learn by inspecting them.

3. Go to the Font tab in the Properties view and set the font size to 20.
RPE indicates by an asterisk that custom styling has been applied to
the item:

4. Place a Container item under the Text item. Container items are used

for extracting the data, that should go into the report, from Design
Room ONE (and possibly also other tools).

5. Next you need to specify from where the container should get its data.

In RPE terminology this is called a data source. A convenient way to
specify the data source is to use a wizard that is provided by RPE.
Perform the command Data – Schema Discovery – REST Schema
Discovery. Press Next.

The base reporting URL for Design Room ONE is
https://<server>:<port>/dr/reporting (see Reporting API). From this
URL you can interactively discover all other reporting URLs using the
wizard.
Give the name “Designs” to this data source. If your Design Room ONE
server uses authentication, see Using Basic Authentication section and
fill in the credentials.

6. Press Next. You will see the schema of the Reporting API.

Select the Item element and mark all its attributes in the right pane.

7. Press Next. RPE will now invoke the Reporting API and show the result
in a table.

Select the “designs” entry which references the Designs API.

8. Press Finish. A data source will be created for the Designs API. The
data source appears in the Data Source view:

9. Now that we have a data source for getting all designs, we can bind it
to the Container item we created previously. Select the Design element
in the Data Source view, drag it to the document template and drop it
on the Container item.

RPE shows that the container is bound to the “Designs” data source. It
also shows that the element Design will be extracted from the data
source. There is one such element for each design and the container
will iterate over them all. The variable ($34 in the picture, but another
number may be used in your case) is automatically assigned by RPE to
let you refer to the extracted Design element within the container.

10. Create a Paragraph inside the container, and create two Text items
inside the paragraph. Your document template should now look like
this:

11. Double-click on the first Text item and enter the text: “Design: “ as a

simple value. This static text will be printed once for each design.
Double-click on the second Text item and select the design name as its
value. You find it in the Data Expression tab under Attributes:

Alternatively you can drag the “name” attribute from the Data Source
view and drop it onto the Text item.

12. The document template is now ready and should look like this:

13. Now it’s time to test the template by generating a report. Perform the
command Configure and Generate Document from the toolbar.

14. In the wizard that appears you need to enter the URL for all data

sources that are used by the template. Enter the URL for the Designs
API:

If your Design Room ONE server uses authentication, see Using Basic
Authentication section and fill in the credentials.
Note that RPE does not save the information you enter in this dialog
with the document template, so if you close the template and open it
again later you have to re-enter this information before you can
generate the report.

15. Press Finish to generate the report. It should look something like this
(with different design names of course):

Lesson 2: Print the root elements of a design, its diagrams and
children

Sample report: DR_roots_children_diagrams.dta
Reporting APIs used: Designs, Model Roots, Children, Diagrams

Here we will create a report which extracts information for one particular
design. The root (i.e. top-level) model elements of the design will be printed,
and for each such element its diagrams and immediate children will also be
printed.

In lesson 1 you learnt how to use the palette for creating a document
template and the REST Resource Discovery wizard for creating data sources.
In this lesson you will learn about external variables, native filtering, dynamic
data source configuration and images.

1. Start by creating this template (either from scratch or by modifying
the template you built in lesson 1):

Refer to lesson 1 if you forgot the steps to create the Designs data
source.
If you generate a report for this template you will see that it looks
exactly like the one we built in lesson 1, where the names of all designs
are printed.

2. Since we only want to include one specific design in this report, we
apply a filter to the container so that only the design we are interested
in gets returned by its API call. Select the container, go to the Data tab
in the Properties view and click on the button next to the Filter field. In
the Native Filter tab enter the filter condition name="DemoRPE":

A native filter is passed as a parameter in the API call to Design Room

ONE, and only the items that match the filter will be returned. RPE also
supports scripted filters. In this case all items are returned from the API
call, but are then filtered by RPE by means of a JavaScript expression.
Native filters are much more efficient than scripted filters since they
can drastically limit the amount of data RPE needs to traverse. For
optimal report generation performance you should therefore use
native filters whenever possible. Design Room ONE supports native
filtering for most of its APIs, but not everywhere and the native
filtering conditions are more limited than scripted filters where the full
power of a programming language (JavaScript) can be used for
defining the filter.

3. Press OK to apply the filter. A filter icon on the container shows that a
filter is applied:

If you now run report generation for the template you will see that only
the design called “DemoRPE” will get included in the report.

4. Create another data source “Roots” using the REST Resource
Discovery wizard.

If your Design Room ONE server uses authentication, see Using Basic
Authentication section and fill in the credentials.
Click Next. Select all attributes for the Design element and press Next

Hint! You don’t need to start the REST Resource Discovery
wizard from the base reporting URL each time. Once you learn
the URLs of the various reporting APIs provided by Design
Room ONE you can type them directly into the wizard to skip
clicking through so many wizard pages before reaching the URL
you want to create a data source for. In the picture below the
discovery starts at the /dr/reporting/designs API to skip the

first few wizard pages.

again. All designs will be listed in the table. Select any of them and
press Next. Then select all attributes for the Item element and press
Next again. You will now see the list of APIs supported on each design:

Select “modelRoots” and press Finish. A data source bound to the
ModelRoots API will be created.

5. Create a Roots container, nested within the Designs container, and
create a Paragraph containing an Image and three Text items:

6. Contrary to the Designs data source, the Roots data source must be

dynamic. That is, rather than configuring it once when generating the
report, it must be configured once for each design (since the design is
a parameter in the URL that is bound to this data source). To configure
the Roots data source dynamically, place a Data Source Configuration
item just before the Roots container:

7. Select the Data Source Configuration. Go to the Data tab in the

Properties view and set the Target data source to Roots. This specifies
a dynamic data source, and a new properties tab Dynamic
configuration appears (you need to deselect the Data Source
Configuration and select it again). In this tab, the URI field specifies the
URI of the data source. We will use a script expression for setting this
URI. To avoid hard coding the URL of the Design Room ONE server in
each data source configuration URI, we should first define a variable
which we can reference from the URI.

8. Create a variable by right-clicking on the Variables item in the Outline
view. Select Insert – New Variable in the context menu and create a
variable DR_SERVER like this:

The variable is external which means that it should be set when
generating the report. However, by specifying a default value we only
need to set it if we want to use data from a non-default Design Room
ONE server.

9. Now we can write the script expression for the URI property of the
Data Source Configuration:

Note that you must mark the variables and attributes, that are
referenced by the script expression, in the left pane. In this case we
reference the DR_SERVER variable and the name and localConfiguration

attributes of the Design element. Note that the localConfiguration

attribute is only available if you have chosen to export the local
configuration information with the design. If this attribute is present
we must set the oslc_config.context parameter in the request for the

root elements, to ensure that the correct version of the design will be
used. As a general rule, always set the oslc_config.context parameter

like this in all requests where a design name is included.
10. Enter data for the three Text items. In the first one drag and drop the

attribute metaClass from the Roots data source. During report

generation it will expand to the name of the meta class of the root
model element (typically “Package”). In the second Text item type the
simple value “ : “ to be used as separator. In the third Text item drag
and drop the attribute name from the Roots data source which will

expand to the name of the root element. Note that when you drop an
attribute on a Text item you should select “Use as value” in the Select
Context dialog that appears.

11. Set the content URL of the Image to fetch the icon for the root
element. Double-click on the Image and enter the following script
expression:

Hint! You can drag and drop the variables and attributes from
the left pane into the script expression to avoid typos.

The icon attribute from the ModelElement element contains the path

to the icon of the model element, so we just need to append that to
the DR_SERVER variable to obtain the full URL of the icon.

12. Now is a good time to save and test your template. You should avoid
too many modifications in a template before trying it out, to simplify
troubleshooting in case something does not work as expected. The
generated report should look like this:

Note that even if the Roots data source is dynamic you need to specify
a value for it when generating the report. You can use any string (but it
must be a URL) since the data source is dynamic. For example, you can
use the string https://dynamic_data_source.

13. To include the diagrams and children elements of the root elements
into the report we need to create two new data sources. Use the REST
Schema Discovery wizard to add these. Start the wizard on the URL
https://localhost:10101/dr/reporting/modelRoots?design=DemoRPE to
save some clicking. On the third wizard page you get the list of root
elements (only one for the DemoRPE design). Select it and proceed to
the fourth wizard page which lists the reporting APIs available for a
model element:

https://dynamic_data_source/
https://localhost:10101/dr/reporting/modelRoots?design=DemoRPE

Create a data source Children bound to the URL stored in the href

attribute of the Children element, and another data source Diagrams
bound to the URL stored in the href attribute of the Diagrams element:

14. Add a container for each of these two data sources. Place them next to

each other inside the Roots container. Use two Data Source
Configuration items to configure them dynamically using the following
scripts:

• Set the URI of the Diagrams data source to:
DR_SERVER + '/dr/reporting/diagrams?design=' + name +
(localConfiguration ? '&oslc_config.context=' +
localConfiguration : '') + '&elementId=' + id

• Set the URI of the Children data source to:
DR_SERVER + '/dr/reporting/children?design=' + name +
(localConfiguration ? '&oslc_config.context=' +
localConfiguration : '') + '&elementId=' + id

where name and localConfiguration is the name and local

configuration of the design, and id is the id of the root element.

15. In the Diagrams container add a Text item to show the name of the
diagram (attribute name of the Diagrams data source) and an Image

item to show the diagram image (attribute url of the Diagrams data

source):

16. In the Children container add an Image and three Text items in the
same way as you did for the root element. In the script expression for
the Image URL make sure you reference the icon of the child element
and not the icon of the root element.

17. The document template is now ready. It should look like this:

The generated report should now contain the diagrams for the root
elements, as well as icon, meta class and name for all its immediate
children.

Lesson 3: Print all classes in a design, and the operations they
contain

Sample report: DR_classes_operations.dta
Reporting APIs used: Model Elements, Children, Element

Here we will create a report which extracts information for one particular
design. In the previous lesson we used native filtering on the Designs API to

find the design to generate the report for. In this lesson we will instead
specify the design using an external variable.

We will use the Model Elements API with native filtering to find all classes in
the design. We will sort the classes alphabetically and print some information
about each of them, such as the operations they contain. You will learn how
to use the Element API to extract information about a particular model
element. You will also learn how to use internal variables, hyperlinks, sorting
and scripted filters.

1. Start by creating two external variables: DESIGN (to hold the name of
the design to report on) and DR_SERVER (same as in previous lesson).

2. Create the data sources we need for this lesson. Use the REST
Resource Discovery wizard and start on the URL
https://localhost:10101/dr/reporting/designs?design=DemoRPE.
Create a ModelElements data source for the ‘modelElements’ entry on
the second wizard page.

Then restart the wizard and click further until you reach the
ModelElement schema where you can create a data source Children.
On this same wizard page you also see an Owner element for which
you can create a data source Element.

https://localhost:10101/dr/reporting/designs?design=DemoRPE

Note that when the wizard lists all model elements in the design
(before you reach the page shown above) you must select an element
that has both an owner and some children. For example, do not select
a root element as in that case no owner will be present, and the wizard
will not let you create a data source for the Element API.

3. Create the template shown below:

Configure the data source configuration using the script expression
DR_SERVER + '/dr/reporting/modelElements?design=' + DESIGN

Here we have assumed that the design specified by the DESIGN variable

has been exported without any local configuration information. To
support also designs with local configurations we would have to add
the setting of the oslc_config.context parameter as described in the

previous lesson.
Finally also set a native filter for the container like this
metaClass=Class

4. If we would generate a report now (try it if you like) we would get a
listing of all classes in the design. The classes will appear in a
seemingly random order. We can make the list sorted by selecting the
container, and in the Data tab of the Properties view click on the
button next to the Sort field. Just as for filtering, sorting can either be
native (performed by Design Room ONE) or scripted (performed by
RPE). Currently Design Room ONE does not support native sorting so
you have to use the somewhat slower scripted alternative. Add the
name attribute to the right table to sort the classes by their names.

Hint! A quick way to start the REST Resource Discovery wizard
directly on the page that shows the schema for the Element API
is to locate an element in the Design Room ONE web
application. Select it in the Explorer view and open the
Advanced tab in the Properties view. There you will find the
reporting URL for the element. You can copy the URL and paste
it into the REST Resource Discovery wizard:

RPE shows an icon on the container to indicate that the elements will
be sorted:

5. Now run report generation for the template. You need to enter a value

for the DESIGN variable (in the Document Specification Configuration
dialog) since we did not give it a default value. Set it for example to
“DemoRPE”. You also need to specify URLs for the three data sources
we have. Since all these data sources are dynamic (i.e. will be
configured dynamically while the report generation runs) you can
enter any URL for them. For example, you can use
https://dynamic_data_source to show that the data sources are
dynamic.
The generated report should look like this:

6. Next let’s extract the owner element for each of the classes and add a
hyperlink to it in the report. We use the Element data source for
getting this data. Add this inside the container:

Configure the data source using the script expression
DR_SERVER + '/dr/reporting/element?design=' + DESIGN +
'&elementId=' + id

where id refers to the id of the current model element. Once again we

have omitted setting the oslc_config.context parameter, but to

support designs with local configurations you would have to set it.

https://dynamic_data_source/

The nested container extracts the owner of the model element.
Previously we have only used containers for extracting a list of items,
to let the container iterate over them, but containers can also be used
to extract a single item like the owner element.

7. The Owner element extracted by the Element container has an href

attribute which contains the URL of the owner element. To extract
information about the owner element, such as its name, we need to
query that URL. However, the URL we get is the Element API which is
also used by the parent container. You must be careful when
reconfiguring a data source whose elements you are currently iterating
over. Changing the URL of the data source inside the container
typically affects the iteration, which often is undesired. To solve this
problem, we create an internal variable OWNER_HREF and assign the
value of the href attribute to it in the Element container. You do the

assignment by selecting the container and then in the General tab in
the Properties view click on the button next to the Assignment field.
Click the Add button in the dialog and select the OWNER_HREF
variable in the list that appears. Set the value of the variable to the
href attribute of the Owner element.

The assignment should look like this:

8. Now we can reconfigure the Element data source after the container

that extracts the owner element to avoid unwanted side effects. Note
that another benefit with this is that the template gets fewer levels of
container nesting.
Add the following items after the container with the variable
assignment:

Configure the Element data source using a data expression that

references the OWNER_HREF variable:

9. Set-up the hyperlink using the Properties view. In the Content tab click

the button in the bottom right corner and enter this script expression
DR_SERVER + '/dr/web?design=' + DESIGN + '&id=' + id +
'&type=model'

where id references the id of the owner element ($7 in the picture

above). The constructed URL opens the Design Room ONE web
application and navigates to the owner element. To support designs
with local configurations we would also need to set the
oslc_config.context parameter as mentioned previously.

Then go to the Specific tab and click the button next to the Display
field. Enter a data expression that references the name of the model
element:

To make the hyperlink look like a hyperlink we also need to apply
some formatting. In the Font tab set blue font color and click the
underline button.

10. Now run report generation again. You should see a hyperlink after
each class that links to the owner of the class.

If you click on the link, Design Room ONE will open the design and
navigate to the owner element.

11. Now let’s add the operations of each class. Operations are child
elements of their class, so we use the Children data source for getting
them. Add the below items at the end of the outermost container:

Configure the Children data source using the following script
expression:
DR_SERVER + '/dr/reporting/children?design=' + DESIGN +
'&elementId=' + id

To support designs with local configurations we would also need to set
the oslc_config.context parameter as mentioned previously.

Set-up the content of the Image using this script expression:
DR_SERVER + icon

where icon references the icon attribute of the child element.

To only get the operations, and not all other children, set up a native
filter on the Children container like this:
metaClass=Operation
Finally apply a little formatting to make the report look nicer. Let the
first Text item have bold font and its container Paragraph a border:

12. In the DemoRPE design few of the classes have any operations.

However, there are several components in that design which contain
operations. Therefore let’s modify the filter of the outermost container
so that it fetches both classes and components. This is an example of
filtering that currently cannot be accomplished by means of a native

filter, so we need to use a script filter instead:

13. Our template is now ready. The completed template looks like this:

Generate a report. It should look like this:

Lesson 4: Print elements with DOORS links and data about the
linked requirements

Sample report: DR_links_requirements.dta
Reporting APIs used: Model Elements, Element, Links

Here we will create a report which extracts all elements in a particular design
for which there is at least one outgoing link to a requirement in DOORS NG.
The links are printed in a table below the element.

In this lesson you will learn about the Links API, tables, conditions and how to
create a report that contains data from multiple tools (in this case Design
Room ONE and DOORS NG).

1. Start by creating data sources for the ModelElements and Element
APIs as in the previous lesson. Also create the external variables
DR_SERVER and DESIGN in the same way as before. Then create the
following template:

The ModelElements data source is configured using the following
script expression:
DR_SERVER + '/dr/reporting/modelElements?design=' + DESIGN
Note that in this case we don’t apply a filter on the container since we
want to iterate over all model elements in the design. This is because it
is possible to link any model element to a requirement.
Also note that for simplicity we have assumed that the design
specified by the DESIGN variable does not have any local

configurations. If it does, you would need to also set the
oslc_config.context parameter as described in previous lessons.

2. Just as we did in the previous lesson we use the Element data source
and an internal variable for extracting the href attribute of the Links

element that is contained in the ModelElement element. Let’s call this
variable LINKS_HREF and add a container where it is assigned.

The Element data source should be configured using this script
expression:
DR_SERVER + '/dr/reporting/element?design=' + DESIGN +
'&elementId=' + id
To support designs with local configurations also set-up the
oslc_config.context parameter.

3. Add a Paragraph item after the container. It will print the element and
its links. However, we only want to print the element if it has at least
one link. We can accomplish this by defining a condition for the
paragraph. In the General tab of the Properties view click on the
button next to the Condition field. Enter a script expression that
checks if the LINKS_HREF variable is set to a URL:

We utilize here the fact that for an element that does not have any
links the Links element will not be present and hence the LINKS_HREF
variable will not be assigned a value by the container. If, on the other
hand, there is at least one link, the LINKS_HREF variable will be
assigned the URL of the Links API which we expect should start with
the string “http”.
We also need to remember to assign a new string (that does not start
with “http”) to the LINKS_HREF variable after the paragraph. This is
needed so that the condition for the paragraph gets correctly
interpreted for each element in the model. We can use another
container for that, and add an assignment to it (for example assigning
the simple value “nolink” to LINKS_HREF.
Finally, add a Text item inside the paragraph with the following script
expression:
'The ' + metaClass + ' "' + name + '" has the following links:'
The paragraph and its surrounding containers should look like this:

Note the icon on the paragraph that shows that it has an attached
condition. It will only be included in the report for elements where the
condition is fulfilled.

4. Inside the paragraph we can now use LINKS_HREF to configure a data
source for getting all links for the model element. Create this Links
data source using the wizard:

Note that you need to select an element that contains at least one link
to be able to create the Links data source with the wizard.
Then add a Data Source Configuration inside the paragraph and set its
target data source to the Links data source you just created. Set the
URI of the data source to the LINKS_HREF variable.

5. Now it’s time to add the table where the requirement links will be
printed. Add a table with two rows and four columns. The first row is
for the table header. Create four cells in it with static texts in each of
them except the first one. Use the Properties view to set a gray
background color for the row (the field Row background color in the

tab Color) and white font color (the field Color in the Font tab).
Connect the second row to the Links data source by dragging and
dropping the Link element from the Data Source view to the row. This
means that one table row will be created for each link.
Add a Text item in the second column cell for showing the type of the
link. Add a hyperlink in the third column cell for showing a hyperlink to
the requirement. Use the label of the link as the display text of the
hyperlink, and use the link URL as hyperlink content.
The table should look like this when ready:

6. Now test the template by generating a report for it. It should look

something like this:

7. So far all data in the report originates from Design Room ONE.
However, one of the strengths with RPE is its ability to pull data from
multiple tools into the same report. We will now add some data about
each requirement that can be found in DOORS NG. In the first table
column we will print the requirement number and in the last table
column we will print the description text of the requirement.
As you may have guessed, the first step is to create a data source for
getting the requirement data from DOORS NG. RPE provides
predefined data sources for DOORS NG, and you therefore don’t have
to use the REST Schema Discovery wizard that you have used
previously. Instead you can create the data source by means of the
command Data – Add Data Source. Set Predefined to “DNG Text” and
replace the server name and port in the Schema field.

Click Next and provide your user authentication to DOORS NG.

Finish the wizard, and you should see the “DNG Text” data source
appear in the Data Source view.

8. We now need to add a Data Source Configuration item in order to
configure the DOORS NG data source. The configuration needs to take
place once for each row in the table since we need to fetch data about
each requirement. Unfortunately RPE does not allow you to place the
Data Source Configuration item directly in the Row item, so you need
to use a Container in which the Data Source Configuration item can be
placed. Create the Container item and move all cells of the row into it.
Then create the Data Source Configuration for the “DNG Text” data
source.

The “DNG Text” data source should be configured using the following
script:
url.replace("/resources/", "/publish/text?resourceURI=")

where url references the URL of the Link element.

9. Add Text items to the first and last cells in the row. In the Data Source
view find the element dataSource – artifact – identifier of the “DNG
Text” data source which holds the requirement number. Drag and drop
it onto the Text item of the first cell. Select the Text item and click on
the Content tab in the Properties view. Click the button in the bottom
right corner and set the content to the data expression _value of the

“identifier” element.

Repeat the same procedure for the last cell of the row, but this time
use the data source element dataSource – artifact – description.
The row should now look like this:

10. The template is now ready, but before you can generate a report you

need to configure the document specification to provide the
authentication information needed by the “DNG Text” data source:

Also note that if you generate this report for the “DemoRPE” design
that is provided in the Design Room ONE installation, you first need to
update the model in RSAD so that the requirement links point at your
DOORS NG server. Then export the updated model to Design Room
ONE and set the DESIGN variable to the name of the exported design.

11. The final document template looks like this:

And here is what the final report looks like:

Reporting API Reference

Design Room ONE provides several REST APIs designed for reporting with
RPE. These APIs all return the data in XML format. If you pass the query
parameter metadata=schema you will get the schema for the returned XML.

The REST Schema Discovery wizard in RPE uses this query parameter to let

you interactively browse the available reporting APIs. All reporting APIs are
discoverable using this wizard from the root reporting URL: /dr/reporting

Using Basic Authentication

Design Room ONE Server since version 2.0 can be set up to protect its data
with authentication, see Authentication Setup document for more details.
Basic authentication must be enabled in Design Room ONE server in order to
make URLs accessible by Rational Publishing Engine (RPE). In order to enable
basic authentication, the following steps are necessary

1. Locate the file OnPrem_Design_Room/config/server-config.json
inside the folder where Design Room ONE is installed

2. Modify server-config.json file to include the following line

"dr_auth_allow_basic": true,

 The default value for dr_auth_allow_basic property is false

3. Restart Design Room ONE server for the changes to take effect.
4. After that whenever RPE requires Design Room ONE URL Basic

authentication should be selected and appropriate credentials entered,
like for example in the image below.

Reporting

URL: /dr/reporting

This is the root reporting API from which all other APIs can be discovered. It
provides a list of Item elements that describe available reporting APIs. The
Item elements have the following nested elements:

• name

The name of the reporting API.

• description

A brief description of what the reporting API does.

• href

The URL of the reporting API.

The following items are currently returned:

• designs

Represents the Designs API.

This reporting API does not support native filtering.

Designs

URL: /dr/reporting/designs

Retrieves all designs that are present on a Design Room ONE server. Each
design is represented by a Design element with the following nested
elements:

• name

The name of the design.

• id

A unique identifier of the design. This id is not often used since the
name of the design also is unique within the same Design Room ONE
server.

• localConfiguration

The name of the design’s local configuration. If the design does not
have a local configuration the element is an empty string.

• href

A URL that describes which reporting APIs that are provided by the
design. This URL is on the form /dr/reporting/designs?design=<name>,

where <name> is the name of the design. If the design has a local

configuration it is specified using an oslc_config.context parameter:

/dr/reporting/designs?design=<name>&oslc_config.context=<localCon
figurationName>

The href URL returns a list of Item elements with the same attributes

as for the Reporting API. The following items are currently returned:
o modelElements

Represents the Model Elements API.
o modelRoots

Represents the Model Roots API.

This reporting API supports native filtering. For example, you can use filtering
to obtain a design with a specific name.

Model Roots

URL: /dr/reporting/modelRoots?design=<name>

Retrieves the root (i.e. top-level) elements of a design.

If the design has a local configuration the oslc_config.context parameter

must also be provided to specify the local configuration name.

Each root element is represented by a ModelElement element with the
following nested elements:

• metaClass

The meta class of the model element.

• id

The unique identifier of the model element.

• name

The name of the model element. Note that although most model
elements have a name, some don’t. The name is an empty string if the
model element does not have a name.

• icon

A URL that describes the icon of the model element. This URL is on the
form /dr/api/icons/<iconID>, where <iconID> is the unique id of the

icon.

• displayName

The string used when displaying the model element in the user
interface. For example, this string is used as the label of the model
element’s node in the Explorer view.

• displayType

The string used when displaying the type (i.e. meta class) of the model
element in the user interface.

• href

A URL that describes the model element. This URL is on the form
/dr/reporting/element?design=<name>&elementId=<id>, where <name> is

the name of the design and <id> is the id of the model element. See

the Element API for more information.
If the design has a local configuration it is specified using an
oslc_config.context parameter:

/dr/reporting/element?design=<name>&oslc_config.context=<localCon
figurationName>&elementId=<id>

This reporting API supports native filtering. For example, you can use filtering
to obtain a root element with a specific name.

Model Elements

URL: /dr/reporting/modelElements?design=<name>

Retrieves all elements of a design. Each element is represented by a
ModelElement element with the same nested elements as described in the
Model Roots API.

If the design has a local configuration the oslc_config.context parameter

must also be provided to specify the local configuration name.

This reporting API supports native filtering. For example, you can use filtering
to obtain all model elements with a specific meta class (for example to
retrieve all classes in a design).

Children

URL: /dr/reporting/children?design=<name>&elementId=<id>

Retrieves all immediate children of a model element.

If the design has a local configuration the oslc_config.context parameter

must also be provided to specify the local configuration name.

Each child element is represented by a ModelElement element with the same
nested elements as described in the Model Roots API. Note that only model
elements are returned by this API. Other elements contained in a model
element, such as diagrams or links, are obtained by specific APIs.

This reporting API supports native filtering. For example, you can use filtering
to obtain all children with a specific meta class (for example to retrieve all
operations of a class).

Diagrams

URL: /dr/reporting/diagrams?design=<name>&elementId=<id>

Retrieves all diagrams of a model element.

If the design has a local configuration the oslc_config.context parameter

must also be provided to specify the local configuration name.

Each diagram is represented by a Diagram element with the following nested
elements:

• kind

The kind of diagram (such as Freeform, Sequence etc.).

• id

The unique identifier of the diagram.

• name

The name of the diagram.

• description

The description of the diagram. This element is not present if the
diagram does not have a description.

• url

The URL from which the diagram image can be obtained. The URL
returns the diagram image as SVG which you can use in a report by
means of an Image item.

This reporting API supports native filtering. For example, you can use filtering
to obtain all diagrams of a specific kind.

Links

URL: /dr/reporting/links?design=<name>&elementId=<id>

Retrieves all outgoing OSLC links stored on a model element.

If the design has a local configuration the oslc_config.context parameter

must also be provided to specify the local configuration name.

Each link is represented by a Link element with the following nested
elements:

• type

The type of link as defined by the OSLC standard (such as Refines,
Derives From etc.)

• label

The label of the link. This is usually the name of the target of the link,
for example the name of a linked requirement.

• linktypedef

The URL that defines the link type. Each type of link has a URL that
defines it.

• url

The URL of the target of the link. For example, this could be the URL of
a requirement in DOORS NG.

• projectarea

In case the target of the link is stored in a Jazz CLM product, this
specifies the Jazz project area where it is located.

• server

The URL of the server that hosts the target of the link.

This reporting API supports native filtering. For example, you can use filtering
to obtain all links of a specific type.

Element

URL: /dr/reporting/element?design=<name>&elementId=<id>

Retrieves information about a model element.

If the design has a local configuration the oslc_config.context parameter

must also be provided to specify the local configuration name.

The obtained information is represented by a ModelElement element with the
following nested elements:

• metaClass

The meta class of the model element.

• name

The name of the model element. The name is an empty string if the
model element does not have a name.

http://open-services.net/wiki/architecture-management/OSLC-Architecture-Management-Specification-Version-2.0/

• id

The unique identifier of the model element.

• icon

A URL that describes the icon of the model element. This URL is on the
form /dr/api/icons/<iconID>, where <iconID> is the unique id of the

icon.

• displayName

The string used when displaying the model element in the user
interface. For example, this string is used as the label of the model
element’s node in the Explorer view.

• displayType

The string used when displaying the type (i.e. meta class) of the model
element in the user interface.

• Owner

The owner of the model element. This element has an attribute href

which specifies the URL for getting information about the owner
element using the Element API. The Owner element is not present if
the model element is a root element (i.e. does not have an owner).

• Children

The immediate children of the model element. This element has an
attribute href which specifies the URL for getting the children using

the Children API. The Children element is not present if the model
element does not have any children.

• Diagrams

The diagrams contained in the model element. This element has an
attribute href which specifies the URL for getting the diagrams using

the Diagrams API. The Diagrams element is not present if the model
element does not have any diagrams.

• Links

The outgoing links stored on the model element. This element has an
attribute href which specifies the URL for getting the links using the

Links API. The Links element is not present if the model element does
not have any links.

• Properties

All properties of the model element are represented by means of
Property elements located in the Properties collection. Each Property
element has the following nested elements:

o name

The name of the property.
o value

The value of the property.

• References

All references of the model element are represented by means of
Reference elements located in the References collection. Each
Reference element has the following nested elements:

o name

The name of the reference.
o Target

An element that represents the target of the reference, i.e. the
element to which the reference is bound. The Target element
has an attribute href which specifies the URL for getting

information about the target element using the Element API. The
Target element is not present if the reference is unbound. Some
references may have multiple target elements (so called multi-
references). In this case there will be one Target element for
each target element of the reference.

This reporting API does not support native filtering.

Troubleshooting

If the following or similar error is reported by Rational Publishing Engine
when report is generated.

CRRPE3107I Downloading data from
https://drone.mycomp.any:10101/dr/reporting/designs?fields=DesignRoom/D
esigns/Design/(name).
CRRPE1064I Error in engine
Connection failed https://
drone.mycomp.any:10101/dr/reporting/designs?fields=DesignRoom/Designs/D
esign/(name)

It could be because Rational Publishing Engine and Design Room ONE server
could not negotiate version of TLS protocol to use. There are two ways to
address this.

1) Rational Publishing Engine could be configured to use TLS v1.2. To do
this add the following line
-Dcom.ibm.rational.rpe.tls12only=true

in the end of the following files
%RPE_HOME%\studio\rpe-studio.ini
and
%RPE_HOME%\launcher\rpe-launcher.ini

2) Enable TLS v1 to be used in Design Room ONE. To do this refer to
“Configure HTTPS” section of Installation Instructions document for
Design Room ONE.

